
Java Technology - Ivo Vondrak ‘99

Java Technology

Ivo Vondrak, Ph.D.
Department of Computer Science

VŠB - Technical University of Ostrava
ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

(JDK1.1 required...)

TM

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Java Technology - Ivo Vondrak ‘99

References
u David Flanagan: Java in a Nutshell, O’Reilly & Associates, Inc.,

USA, 1996
u Sun Educational Services: Basic Java Programming, Sun

Microsystems, USA, 1996
u Sun Educational Services: Advanced Java Programming, Sun

Microsystems, USA, 1996
u Gary Cornell, Cay S. Horstmann: Core Java, The SunSoft Press,

USA, 1996
u Sun Microsystems: The Java Development Kit, HTML document,

Sun Microsystems, USA, 1999
u Mary Campione, Kathy Walrath: The Java Tutorial: Object Oriented

Programming for the Internet, Addison-Wesley, USA, 1996
u Greg Voss: JavaBeans Tutorial, HTML document, Sun

Miscrosystems, USA, 1997
u Peter B. Kessler, Roger Riggs: Remote Objects for Java,

JavaOne, Sun’s Worldwide Java Developer Conference, 1997

Java Technology - Ivo Vondrak ‘99

Java as a Technology

u Architecture Neutral and Portable
u Object Oriented
u Robust, Dynamic and Secure
u Multithreaded
u Distributed
u Component Based Development (CBD)

Support

Java Technology - Ivo Vondrak ‘99

Architecture-Neutral
u Java source code is “compiled” into high-

level, machine independent, Java Bytecode
(.class files) format.
u packages java.awt.*, java.net.*, java.applet.*

u Java Virtual Machine is an imaginary
machine that is implemented by emulating it
in software on a real machine.
u JVM specification provides concrete

definitions for implementation of instruction
set, register set, class file format, stack ...

Java Technology - Ivo Vondrak ‘99

Compile Time and Runtime

Java
Source

Java
Compiler

Java
Bytecodes

Network

Class
Loader

Bytecode
Verifier

Interpreter

Runtime

Code
Generator

Hardware

Compile time Runtime

Java Technology - Ivo Vondrak ‘99

Java Programming Structures
u Basic Java Constructs
u Java Flow Control
u Object Concepts
u Exceptions and Exception Handling
u Types of Java Programs
u Packages

Java Technology - Ivo Vondrak ‘99

Comments and Statements
u Comments

u Statements form the smallest
executable unit in a program

// comment on one line
/* comment on one or more lines */
/** documenting comment, comment that should be
included in any automatically generated
documentation (the HTML files generated by the
javadoc command */

int x;
x = 1 + 3 * 5;

Java Technology - Ivo Vondrak ‘99

Identifiers
u Identifiers name variables, functions, classes,

and objects - anything that programmers need
to identify and use. Identifiers start with letter,
underscore or dollar sign and they are
case-sensitive (e.g.):
u ident
u nameOfSomething
u _name
u User_name1
u $alsoValid

Java Technology - Ivo Vondrak ‘99

Keywords
abstract int
boolean interface
break long
byte native
case new
catch null
char package
class private
continue protected
default public
do return
double short
else static
extends

Java Technology - Ivo Vondrak ‘99

Primitive Data Types

Type Contains Default Size
boolean true or false false 1 bits
char unicode character \u0000 16 bits
byte signed integer 0 8 bits
short signed integer 0 16 bits
int signed integer 0 32 bits
long signed integer 0 64 bits
float floating point 0.0 32 bits
double floating point 0.0 64 bits
String string of chars null ?? bits

Java uses five basic element types: boolean,
character, integer, floating point, and string.

Java Technology - Ivo Vondrak ‘99

Declarations and Assignments

int i, j; // declare integer variables
long l = 100L; // declare long variable
float x = 3.14159f; // declare and assign floating point
double y = 3.14159; // declare and assign double;
boolean cond; // declare boolean variable
char c1, c2; // declare char variables
String label; // declare string variable

c1 = ‘X’; // assign character
label = “Hello Duke”; // assign string
i = 1; // assign integer variable
j = i+1; // assign integer variable

Java Technology - Ivo Vondrak ‘99

Arrays
u Declaring arrays
u Creating arrays - arrays are created using the

new keyword
u Using arrays
int[] x; // or int x[];
int[] [] table; // two dimensional array = array of arrays
x = new int[5]; // array of 5 integers created
table = new int[2] [10]; // two dimensional array 2x10 is created
String[] names = { “Hello” “Hi” “Good Morning” }
 // array created with initial values
for (int i=0; i < x.length; i++) {
 x[i] = i+10; // assign i+10 to element i of array x
}

Java Technology - Ivo Vondrak ‘99

Operators
u Java support almost all of the standard C operators.

u Operator instanceof returns true if the object on the
left-hand side is an instance of type specified on its
right side.

“Hello World!” instanceof String // returns true

= > < ! ~ ?:
== <= >= != && || ++ --
+ - * / & I ^ % << >> >>>
+= -= *= /= &= I= ^= %= <<= >>= >>>=

Java Technology - Ivo Vondrak ‘99

Using Operators
u Operators for numbers behave as expected

u Casting - conversion between variable types

int i = 1 + 3; // i == 4
int j = 1; // j == 1
j += 1; // j = j+1 => j == 2
i++; // i = i+1 => i == 5
boolean c1 = true; // c1 == true
boolean c2 = !c1 // c2 == false
String name = “Richard” + “Gere”;

int i, j = 5;
float x = 10.2f;
i = (int) x / j; // explicit cast needed, i == 2
i = (int) (x / (float) j);

Java Technology - Ivo Vondrak ‘99

Branching Statement if-else
The basic syntax:

if (boolean) {
 statements;
}
else {
 statements;
}

float x, y;
...
if (y == 0) {
 System.out.println(“Divided by zero!”)
}
else {
 x = x / y;
}

Java Technology - Ivo Vondrak ‘99

Branching Statement switch
The basic syntax:

switch (expr) {
 case expr1:
 statements;
 break;
 case expr2:
 statements;
 break;
 default:
 statements;
}

int counter;
...
switch (counter % 3) {
 case 0:
 System.out.prinln(“Hello”);
 break;
 case 1:
 System.out.println(“Hi”);
 break;
 case 2:
 System.out.println(“Bye”);
 break;
}

Java Technology - Ivo Vondrak ‘99

Loop Statements for, while, and do
The basic syntax:
for (init_expr; test_expr; increment_expr) {
 statements;
}

while (boolean) {
 statements;
}

do {
 statements;
} while (boolean);

int i = 0;
for (i=0; i < 10; i++) {
 System.out.println(“Value: “+ i);
}
int j = 0;
while (j < 10) {
 System.out.println(“Value: “+ j);
 j++;
}
int k = 0;
do {
 System.out.println(“Value: “+ k);
 k++;
} while (k < 10);

Java Technology - Ivo Vondrak ‘99

General Flow Control
u break [label]
u continue [label]
u return expr;
u label: statement; // statement must be a loop statement

loop: while (true) {
 for (int i = 0; i < 100; i++) {
 switch (c = in.read()) {
 case -1:
 case ‘\n’: break loop; // jumps out while
 ...
 }
 }
test: for (int i = 0; i < 100; i++) {
 while (true) {
 if (i > 10) continue test; // jumps to next iteration of for
 }
 ...
 }

Java Technology - Ivo Vondrak ‘99

Object-Oriented Programming

u Encapsulation - a single object definition binds
the operations and state particular to that object,
and the implementation details are hidden.

u Inheritance - classes can be defined based upon
existing class definitions for code reuse and
enhancement.

u Polymorphism - The application of a function
(method) to objects of different classes achieves
the same semantic result.

Object-oriented programming defines a program as a
set of collaborating components (objects) with
specified behavior and state.

Java Technology - Ivo Vondrak ‘99

Objects and Classes
u Class defines how an object will look - a template

that defines the operation and behavior of an
object.

u Object is an instance of a class - an example built
from template.

Car operations:
drive, turn, stop

Car states:
moving, turning, stopped

The class definition encapsulates all necessary attributes (state
variables) and operations. The interface is consistent because all
instances provide the same operations. Implementation details are
hidden (the user do not have to know how the car stops, just applying
the brakes will stop the car.

Java Technology - Ivo Vondrak ‘99

Car Class Definition
public class Car {
 // State variables
 private int speed, direction;
 String color;

 // Operations - methods
 public Car (String color) { // Constructor
 this.color = color;
 }
 public void drive (int newSpeed) {
 speed = newSpeed;
 }
 public void stop() {
 speed = 0;
 }
 ...
}

Java Technology - Ivo Vondrak ‘99

Creating and Using an Object

Class Car

Instance Ferrari

Car Ferrari;
Ferrari = new Car (“red”);
Ferrari.drive(130);
...
Ferrari.stop();

Receiver

Message

Argument

Java Technology - Ivo Vondrak ‘99

Memory Allocation

Car Ferrari;
Ferrari = new Car (“red”);
Ferrari.drive(130);
Ferrari.stop();
...

Car Ferrari2 = Ferrari;

nullFerrari

In memory

0x00010011Ferrari

0
0

“red”

speed
direction

color

0x00010011Ferrari2

Java Technology - Ivo Vondrak ‘99

Copying Objects
To copy the object method clone() must be used.

Car Ferrari;
Ferrari = new Car (“red”);
Ferrari.drive(130);
Ferrari.stop();
...

Car Ferrari2 = Ferrari.clone();

nullFerrari

In memory

0x00010011Ferrari

0
0

“red”

speed
direction

color

0x00011011Ferrari2

0
0

“red”

speed
direction

color

Java Technology - Ivo Vondrak ‘99

Checking Objects for Equality
u Operator == tests whether two

variables refer to the same object
(identity), not whether two object
contain the same values.

u In Java, number of classes define an
method equals() that compares
containment of objects.

Java Technology - Ivo Vondrak ‘99

Generalization and Inheritance
u Generalization is the relationship between a class and

one or more refined versions of it.
u Inheritance refers to the mechanism of sharing

attributes and operations.
attributes: speed, direction, color
operations: drive, turn, stop

inherits

generalize
Car

Truck Passenger

attributes: + numOfPassengers
operations:attributes: + loading

operations: + load

Java Technology - Ivo Vondrak ‘99

Subclassing
public class Truck extends Car {
 // Additional state variables
 private int loading;

 // Operations - methods
 public Truck (String color) { // Constructor
 super(color);
 }
 public void drive (int newSpeed) { // Overriding of parent method
 if (newSpeed <= 110)
 super.drive(newSpeed);
 }
 public void load(int loading) { // Additional method
 this.loading = loading;
 }
}

Java Technology - Ivo Vondrak ‘99

Garbage Collection
u When an object is no longer being used, it

should release its memory space.
u The collection and freeing of memory is

the responsibility of a thread of code
called automatic garbage collector.

u The garbage collector keeps track of all
memory allocated with the new key
keyword and also tracks who has access
to that memory. When the access count
reaches zero, the memory can be
collected and freed.

Java Technology - Ivo Vondrak ‘99

Exceptions and Exception Handling
u Exception Handling

u Declaring Exceptions
void method(arg...) throws ExceptionType {...}

u Defining and Generating Exceptions
throw new MyException(“text to show”)

try {
 critical_statements;
}
catch (ExceptionType e) {
 // Handle exception object e
}
finally {
 always_statements;
}

int x, y;
try {
 x = 10 / y;
}
catch (Exception e) {
 x = 1; // Default value
}

Java Technology - Ivo Vondrak ‘99

Types of Java Programs
u Java applications, stand-alone programs

like any native programs.
u Applets, Java programs that are

downloaded over WWW and executed by
a Web browser
u Servlets, server side components, which

dynamically extend Java-enabled servers. They
provide a general framework for services built
using the request-response paradigm.

Java Technology - Ivo Vondrak ‘99

Java Application

public class HelloWorld {
 public static void main(String[] arg) {
 System.out.println (“Hello World!”);
 }
}

javac HelloWorld.java
java HelloWorld

HelloWorld.java is compiled
and HelloWorld.class file is
produced.

Interpreter runs main from
HelloWorld.class.

Java Technology - Ivo Vondrak ‘99

Java Applet

import java.awt.Graphics;

public class HelloWorldApplet extends java.applet.Applet {
 // Display the content of the applet on the screen
 public void paint(Graphics g) {
 g.drawString(“Hello World!”,5,25);
 }
}

Java Technology - Ivo Vondrak ‘99

HTML Code for Applet
<HTML>
<HEAD>
<TITLE>Hello World Page</TITLE>
</HEAD>
<BODY>
<P>
My first applet says:
<APPLET CODE=“HelloWorldApplet.class” WIDTH=150 HEIGHT=25>
</APPLET>
</BODY>
</HTML>

Java Technology - Ivo Vondrak ‘99

Program Structure
A program in Java consists of one or more class
definitions, each of which has been compiled into its
own .class file of Java Virtual Machine object code. In
case of Java application one of these classes must
define a method main().

public class Echo {
 public static void main(String[] arg) {
 for (int i = 0; I < arg.length; i++)
 System.out.print (arg[i] + ” “);
 System.out.println (“\n”);
 }
}

Java Technology - Ivo Vondrak ‘99

Packages and Classes
u Every compiled class is stored in a separate

file (.class). This class must be stored in a
directory that has the same components as
the package name => user.bank.Account and
user\bank\Account.class

u Source code file (.java) consists of one or
more class definitions. Only one class may
be declared public and the source file must
have the same name.

Java Technology - Ivo Vondrak ‘99

Package and Import Statements
u The package statement must appear as

the first statement. If omitted, the code is
part of unnamed default package.

u The import statement makes Java classes
available to the current class under an
abbreviated name.

import user.bank.*; // Abbreviate all class names from the package
import user.bank.Account; // Only Account can be used abbreviated
...
new Account(); // Instead of new user.bank.Account()

Java Technology - Ivo Vondrak ‘99

The Java Class Path
u Java interpreter looks up classes

relative to the directories specified
by the CLASSPATH environment
variable.

CLASSPATH=.;c:\jdk\lib\classes.zip;d:\java

.\user\bank\Account.class
or
d:\java\user\bank\Account.class
must exist, or the class is zipped in classes.zip
including directory specification!

Java Technology - Ivo Vondrak ‘99

Java Class Library

u java.lang: Classes that apply the language itself, which includes
the Object class, the String class, and the System class.

u java.util: Utility classes, such as Date, as well as simple collection
classes, such as Vector and Hashtable.

u java.io: Input and output classes for writing and reading from
streams.

u java.net: Classes for networking support.
u java.awt: The Abstract Window Toolkit: Classes that implement a

graphical user interface.
u java.applet: Classes to implement Java applets, including the

Applet class itself.
u ...

Java class library (API) provides the set of classes that are
guaranteed to be available in any Java environment. Those classes
are in packages and they define one large hierarchy with one root -
class Object. Programmer can define his/her new classes and
packages that extend this hierarchy.

Java Technology - Ivo Vondrak ‘99

Object-Oriented Approach
u Object, Type, and Class
u Subtypes and Subclasses
u Creating and Destroying Objects
u Class Variables and Methods
u Data Hiding and Encapsulation
u Abstract Classes

Java Technology - Ivo Vondrak ‘99

Object, Type, and Class
u An Object is an identifiable individual entity with:

u Identity: a uniqueness which distinguishes it from all
other objects

u Behavior: services it provides in interactions with other
objects

u Attributes: data value held by an object
u Type: visible interface and behavior

u Usually the object is a member of multiple types
u Two objects with different implementation may be the

same type
u A Class is an abstraction of objects with similar

implementation
u Every object is an instance of one class

Java Technology - Ivo Vondrak ‘99

Interface and Class Declaration
public interface CounterType {
 public void increment();
 public void decrement();
}

public class Counter implements CounterType {
 protected int value = 0;
 public void increment() {
 value++;
 }
 public void decrement() {
 value--;
 }
 public void reset() {
 value = 0;
 }
}

Java Technology - Ivo Vondrak ‘99

Subtypes and Subclasses
u Extensions of the interface are

described with subtypes
u Compatible services are still guaranteed

u Re-use of implementation is provided
by subclasses
u Each subclass can define its own

implementation of attributes and services

Java Technology - Ivo Vondrak ‘99

Types and Subtypes

public interface BasicCounterType {
 public void increment();
 public void decrement();
}

public interface CounterType extends BasicCounterType {
 public void reset();
}

Java Technology - Ivo Vondrak ‘99

Class Implements Interface
public class IntCounter implements CounterType {
 protected int value = 0;
 public int getValue() {
 return value;
 }
 public void increment() {
 value++;
 }
 public void decrement() {
 value--;
 }
 public void reset() {
 value = 0;
 }
}

Java Technology - Ivo Vondrak ‘99

Main Application Class
public class CounterApp {
 public static void main(String[] arg) {
 CounterType counter = createCounter();
 counter.reset();
 counter.increment();
 counter.increment();
 }
 ...

 private static CounterType createCounter() {
 return new IntCounter();
 }
}

Java Technology - Ivo Vondrak ‘99

What is the Benefit?
Re-use of the code for completely different
implementations of Counter!

public class StopWatch implements CounterType, TimeType {
 protected int hours, minutes, seconds;
 public String getTime() {
 return hours + “:” + minutes + “:” + seconds;
 }
 public void increment() {
 if (++seconds == 60) {
 seconds = 0;
 if (++minutes == 60) {
 minutes = 0;
 ++hours;
 }
 }
 }
 public void decrement() {...}
 public void reset() {hours = minutes = seconds = 0;}
}

Java Technology - Ivo Vondrak ‘99

public class StopWatchApp extends CounterApp {
 public static void main(String[] arg) {
 CounterType counter = createCounter();
 counter.reset();
 counter.increment();
 counter.increment();
 }

 private static CounterType createCounter() {
 return new StopWatch();
 }
}

Two Implementations - One Type

Inherited!!!

Java Technology - Ivo Vondrak ‘99

Subclasses and Inheritance
u The keyword extends is used to

subclass an object.
u Every class has a superclass. If no

superclass is specified with extends
clause, the superclass is the class
Object from java.lang.* package.

u Class declared with the final modifier
cannot be subclassed.

Java Technology - Ivo Vondrak ‘99

Referring to Object Itself
The keyword this can be used to refer to an object itself.
If no object reference is specified implicitly this is used.

public class IntCounter implements CounterType {
 protected int value = 0;
 public void increment() {
 this.value = this.value + 1;
 // value = value+1 is perfectly valid as well
 }
 ...
}

Java Technology - Ivo Vondrak ‘99

Referring to the Parent Class
The keyword super allows to reference methods that
were overriden.

public class LimitedCounter extends IntCounter {
 protected int limit = 100;
 ...
 public void increment() {
 if (value < limit) {
 super.increment(); // Calls increment() from IntCounter
 }
 }
 ...
}

Java Technology - Ivo Vondrak ‘99

Constructors
u Every class has at least one constructor

method responsible for initialization of the
new object. If no constructor is defined Java
creates default one with no arguments.

u The constructor name is always the same as
the class name.

u The return object is implicitly an instance of
the class. No return type is specified, nor is
the void keyword used.

Java Technology - Ivo Vondrak ‘99

Multiple Constructors

public class IntCounter implements CounterType {
 protected int value;
 public IntCounter(int value) {
 this.value = value;
 }
 public IntCounter() {
 this(0); // The first constructor is invoked
 }
 ...
}

Java Technology - Ivo Vondrak ‘99

Constructor Chaining
The keyword super can be used as the first method
call in a constructor to call the parent’s constructor.

public class LimitedCounter extends IntCounter {
 protected int limit;
 public LimitedCounter(int limit) {
 super(1);
 this.limit = limit;
 }
 ...
}

Java Technology - Ivo Vondrak ‘99

Object Destruction
u Garbage Collection destroys objects that

are no longer needed. It runs as low
priority thread when nothing else is going
on or when the interpreter has run out of
memory.

u Java finalizer method performs finalization
for an object.

// Closes the stream when garbage is collected.
// Checks the file descriptor fd first to make sure it is not already closed.
protected void finalize() throws IOException {
 if (fd != null) close();
}

Java Technology - Ivo Vondrak ‘99

Class Variables and Methods
u Class Variable (static) - there is only one

copy of this variable associated with the
class and shared by all instances, e.g.

System.out.println(“Hi there!”);
u Class Method (static) - class method is

invoked through class rather than through
an instance. An implicit this reference is
not passed!

Math.sqrt(12.34);

Java Technology - Ivo Vondrak ‘99

Data Hiding and Encapsulation

Modifier

public

default

protected

private

the same class yes yes yes yes
the subclass yes yes yes no
the same package yes yes yes no
anywhere yes no no no

Java Technology - Ivo Vondrak ‘99

Abstract Classes
u An abstract method has no body; it has a

signature definition followed by a semicolon,
e.g.

public abstract void foo();
u Any class with an abstract method is

automatically abstract.
u An abstract class cannot be instantiated.
u A subclass of an abstract class can be

instantiated if it overrides each of the abstract
methods and provides an implementation.

Java Technology - Ivo Vondrak ‘99

Fundamental Techniques
u Containers
u Indirect Invocation
u Input and Output Streams
u Threads and Multithreaded Programs
u Inner Classes
u Event Model
u Simple Networking

Java Technology - Ivo Vondrak ‘99

Enumeration Type
This interface defines the methods necessary to
enumerate, or iterate through set of values.

// package java.util
public interface Enumeration {
 public boolean hasMoreElements();
 public Object nextElement();
}

...
for (Enumeration e = vector.elements() ; e.hasMoreElements() ;) {
 System.out.println(e.nextElement());
}

Java Technology - Ivo Vondrak ‘99

Containers
u The Vector class implements a growable

array of heterogeneous objects.
u The Stack represents LIFO array of

objects. The Stack extends Vector by
implementing push(), pop(), peek() …

u The Dictionary is the abstract parent for
any class, such as Hashtable, which
maps keys to values.

Java Technology - Ivo Vondrak ‘99

Observer Design Pattern
Intent - define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

StockMarket
Vector data
dataChanged()
...

…
hasChanged();
notifyObservers(data);

Observable (class)
addObserver(Observer o)
deleteObserver(Observer o)
notifyObservers(Object arg)
...

for all observers
o.update(this,arg)

Observer (interface)
update(Observable o,

Object arg)

observer

BarChart
update(Observable o,
 Object arg)
...

TextArea
update(Observable o,
 Object arg)
...

...
Vector data = (Vector) arg;
draw(data);

extends

implements

...
Vector data = (Vector) arg;
print(data);

java.util
package

Java Technology - Ivo Vondrak ‘99

Input and Output Streams
u A stream is a flowing sequence of characters.
u A program can get input from a data source by

reading a sequence characters from a stream
attached to the source.

u A program can produce output by writing a
sequence of characters to an output stream
attached to a destination.

u Java development environment includes a package,
java.io, that contains a set of input and output
streams. The InputStream and OutputStream
classes are the abstract superclasses that define
the behavior for sequential input and output
streams in Java.

Java Technology - Ivo Vondrak ‘99

Simple I/O Application
Intent - read a file and display its content on the
standard output stream (screen).

import java.io.*;
public class ShowFile {
 public static void main(String[] arg) {
 try {
 File inputFile = new File(arg[0]);
 FileInputStream input = new FileInputStream(inputFile);
 int c;
 while ((c = input.read()) != -1)
 System.out.write(c); // System.out = PrintStream
 input.close();
 }
 catch (Exception e) {
 System.out.println("Error "+e);
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Object Serialization
The capability to store and retrieve Java objects is essential to
building all but the most transient applications. The key to storing
and retrieving objects is representing the state of objects in a
serialized form sufficient to reconstruct the object(s). Objects to be
saved in the stream may support either the Serializable or the
Externalizable Interface.
// Write objects
Counter counter = new Counter(0);
...
FileOutputStream f = new FileOutputStream("counter.obj");
ObjectOutput output = new ObjectOutputStream(f);
output.writeObject(counter);
output.writeObject(new Date());

// Read objects
FileInputStream f = new FileInputStream("counter.obj");
ObjectInput input = new ObjectInputStream(f);
Counter counter = (Counter) input.readObject();
Date date = (Date) input.readObject();

Java Technology - Ivo Vondrak ‘99

Threads

u The thread body consists entirely of the run()
method and serves as a main routine for the
thread.

u A thread can be in state runnable, not runnable
(because of suspend(), sleep(), wait() or blocking
I/O) and dead (because of stop() or completion of
the run() method). Suspended thread can be
activated by resume().

u A thread can have a priority from
Thread.MIN_PRIORITY (1) to
Thread.MAX_PRIORITY (10).

Thread represents a single process (sequence of
statements) in execution on a system.

Java Technology - Ivo Vondrak ‘99

Multithreaded Programs
Intent - create two threads that each print out their
own text. public class PrintThread extends Thread {

 String name;
 int delay;
 public PrintThread(String name, int delay) {
 this.name = name;
 this.delay = delay;
 }
 public void run() {
 try {
 sleep(delay);
 }
 catch (InterruptedException e) {}
 System.out.println(“Hello from “+name);
 }
}

…
t1 = new PrintThread(“#1”,(int) (Math.random()*2000));
t2 = new PrintThread(“#2”,(int) (Math.random()*2000));
t1.start(); // start() calls run()
t2.start();

Java Technology - Ivo Vondrak ‘99

Interface Runnable
Interface Runnable declares a run() method.

public class Print implements Runnable {
 String name;
 int delay;
 public Print (String name, int delay) {
 this.name = name;
 this.delay = delay;
 }
 public void run() {
 try {
 Thread.sleep(delay);
 }
 catch (InterruptedException e) {}
 System.out.println(“Hello from “+name);
 }
}

…
t1 = new Print (“#1”,(int) (Math.random()*2000));
t2 = new Print (“#2”,(int) (Math.random()*2000));
new Thread(t1).start(); // start() calls run()
new Thread(t2).start();

Java Technology - Ivo Vondrak ‘99

Synchronization
u Since Java is a multithreaded system, care must be taken to

prevent multiple threads from modifying objects simultaneously.
Section of code that must not be executed simultaneously are
known as “critical section”.

u Statement synchronized:
synchronized (expression) statement

- expression must resolve to an object or array
- statement is the code of critical section.
The synchronized statement attemps to acquire an exclusive lock
for the object or array and it does not execute the critical section
code until it can obtain this lock.

u Method modifier synchronized indicates that entire method is
critical section code. For a synchronized instance method, Java
obtains an exclusive lock on the class instance. For a
synchronized class method, Java obtains an exclusive lock on the
class.

Java Technology - Ivo Vondrak ‘99

Monitor
u A monitor is associated with a specific object (or array) and

functions as a lock on that object. When a thread holds the
monitor for some object, other threads are locked out and
cannot inspect or modify this object.

u The Java runtime system allows a thread to re-acquire a
monitor that it already holds because Java monitors are
reentrant. Reentrant monitors are important because they
eliminate the possibility of a single thread deadlocking
itself on a monitor that it already holds.

class Reentrant {
 public synchronized void a() {
 b();
 System.out.println("here I am, in a()");
 }
 public synchronized void b() {
 System.out.println("here I am, in b()");
 }
}

Java Technology - Ivo Vondrak ‘99

Multiple-Thread Communication

u Method wait() of the Object class
makes a thread wait until some
condition occurs.

u Method notify() of the Object class
tells a waiting thread that a condition
occured.

Java Technology - Ivo Vondrak ‘99

Example: Producer/Consumer
Intent - the Producer generates an integer between
0 and 9, stores it in a Pool object, and prints the
generated number. To make the synchronization
problem more interesting, the Producer sleeps for
a random amount of time between 0 and 1000
milliseconds before repeating the number
generating cycle. The Consumer consumes all
integers from the Pool (the exact same object into
which the Producer put the integers in the first
place) as quickly as they become available.

Java Technology - Ivo Vondrak ‘99

Producer
public class Producer extends Thread {
 private Pool pool;
 public Producer(Pool pool) {
 this.pool = pool;
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 pool.put(i); // Wait until the previous value is consumed
 System.out.println("Producer put: " + i);
 try {
 sleep((int)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Consumer
public class Consumer extends Thread {
 private Pool pool;
 public Consumer(Pool pool) {
 this.pool = pool;
 }
 public void run() {
 int value;
 for (int i = 0; i < 10; i++) {
 value = pool.get(); // Wait until the value is produced
 System.out.println("Consumer got: " + value);
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Shared Pool
public class Pool {
 private int contents;
 private boolean isFull = false;
 public synchronized int get() {
 while (isFull == false) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 int value = contents;
 isFull = false;
 notifyAll();
 return value;
 }

public synchronized void put(int i) {
 while (isFull == true) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 contents = i;
 isFull = true;
 notifyAll();
 }
}

Java Technology - Ivo Vondrak ‘99

Producer/Consumer Test

public class ProducerConsumerTest {
 public static void main(String[] args) {
 Pool pool = new Pool();
 Producer p = new Producer(pool);
 Consumer c = new Consumer(pool);
 p.start();
 c.start();
 }
}

Java Technology - Ivo Vondrak ‘99

Inner Classes
u Inner classes can be defined

u as members of other classes,
u locally within a block of statements, or
u (anonymously) within an expression.

u The inner class's name is not usable outside its
scope.

u The code of an inner class can use simple names
from enclosing scopes, including both class and
instance members of enclosing classes, and local
variables of enclosing blocks.

u Inner classes have analogical purpose as C
function pointers or Smalltalk blocks.

Java Technology - Ivo Vondrak ‘99

Adapter Class
Intent - adapter class receives method invocations using a specified
type interface on behalf of another object not of that type.

public class FixedStack {
 Object[] array = new Object[100];
 int top = 0;
 public void push(Object item) {
 array[top++] = item;
 }
 // other stack methods...
 class Enumerator implements Enumeration {
 int count = top;
 public boolean hasMoreElements() {
 return count > 0;
 }
 public Object nextElement() {
 if (count == 0) return null;
 return array[--count];
 }
 }
 public Enumeration elements() {
 return new Enumerator();
 }
}

Warning: Synchronization
between stack and enumeration
is missing!

Java Technology - Ivo Vondrak ‘99

Example: Fixed Stack

public class FixedStackTest {
 public static void main(String[] arg) {
 FixedStack s = new FixedStack();
 s.push(new Integer(0));
 s.push(new Float(3.14159));
 for (Enumeration e=s.elements(); e.hasMoreElements();) {
 System.out.println("Next element = "+e.nextElement());
 }
 }
}

Java Technology - Ivo Vondrak ‘99

A Local Class
When a class definition is local to a block, it may access
any names which are available to ordinary expressions
within the same block.

public Enumeration enumerate(final Object array[]) {
 class E implements Enumeration() {
 int count = 0;
 public boolean hasMoreElements()
 { return count < array.length; }
 public Object nextElement()
 { return array[count++]; }
 }
 return new E();
}

…
Enumeration e =
x.enumerate(array);
Object o = e.nextElement();
...

Java Technology - Ivo Vondrak ‘99

Anonymous Class

public interface Block {
 public void evaluate();
 public void evaluateWith(Object o);
}

Intent - create “block of code” object that can be evaluated
when needed.

public class Counter {
 int value = 0;
 // other counter methods ...
 public Block display() {
 return new Block() {
 public void evaluate() {
 System.out.println(value);
 }
 public void evaluateWith(Object o) {
 ((PrintStream) o).println(value);
 }
 };
 }
}

…
Block code = counter.display();
if (stream == null)
 code.evaluate();
else
 code.evaluateWith(stream);

Java Technology - Ivo Vondrak ‘99

Event Model

u Event notifications are propagated from sources to listeners by
methods invocations on the target listener objects.

u Each distinct kind of event notification is defined as a distinct method.
These methods are grouped in EventListener interfaces inherited form
java.util.EventListener.

u Event listener classes identify themselves as interested in particular
set of events by implementing some set of EventListener interfaces.

u The state associated with an event notification is normally
encapsulated in an event state object that inherits form
java.util.EventObject and which is passed as the sole argument to the
event method.

u Event sources identify themselves as sourcing particular events by
defining registration methods and accept references to instances of
particular EventListeners interfaces.

Events are mechanism for propagating of state change notifications
between source object and one or more listener objects.

Java Technology - Ivo Vondrak ‘99

Overview of Event Model

Event Source Event ListenerFooEvent

public synchronized addFooListener (FooListener fel) {
 // register listener
}

public class MyClass implements FooListener {
 // MyClass implementation
 public void fooEventOccurred(FooEvent e) {
 //…
 }
}

FooListener l;

interface
reference

register
listener

fire
event

Java Technology - Ivo Vondrak ‘99

Model/View Paradigm
Intent - implement dependency mechanism used in MVC.

public interface ModelChangedListener extends EventListener {
 public void modelChanged(ModelEvent e);
}

public class ModelEvent extends EventObject {
 private Object argument;
 public ModelEvent(Object source, Object argument) {
 super(source);
 this.argument = argument;
 }
 public Object getArgument() {
 return argument;
 }
}

Java Technology - Ivo Vondrak ‘99

Model Definition
public class Model {
 private Vector listeners = new Vector();
 public synchronized void addModelChangedListener(ModelChangedListener l) {
 listeners.addElement(l);
 }
 public synchronized void removeModelChangedListener(ModelChangedListener l) {
 listeners.removeElement(l);
 }
 protected void notifyModelChanged(Object arg) {
 Vector l;
 ModelEvent e = new ModelEvent(this, arg);
 synchronized (this) {
 l = (Vector) listeners.clone();
 }
 for (int i=0; i < l.size(); i++) {
 ((ModelChangedListener) l.elementAt(i)).modelChanged(e);
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Example: Counter Model
public class Counter extends Model {
 private int value = 0;
 public void increment()
 { setValue(getValue()+1); }
 // similarly decrement ...
 public void setValue(int value) {
 this.value = value;
 notifyModelChanged(new Integer(value));
 }
 public int getValue()
 { return value; }
} public class ModelViewTest implements ModelChangedListener {

 public static void main(String[] arg) {
 ModelViewTest app = new ModelViewTest();
 Counter counter = new Counter();
 counter.addModelChangedListener(app);
 counter.increment();
 counter.decrement();
 }
 public void modelChanged(ModelEvent e) {
 System.out.println(e.getArgument());
 }
}

Java Technology - Ivo Vondrak ‘99

Simple Networking
u Loading applets from the network. Applets are

referenced in a HTML file.
u Java programs can use URLs to connect to and

retrieve information over the network. Uniform
Resource Locator (URL) is an address of a resource
on the Internet (protocolID:resourceName).

u Socket-based communication between programs. A
socket is one end of a two-way communication link
between two programs running on the network.

u Communication based on datagrams. The delivery of
datagrams is not guaranteed nor is the order in
which they are delivered.

Java Technology - Ivo Vondrak ‘99

Reading from URL
Intent - open URL http://www.yahoo.com, get an input stream
on the connection, and read from the input stream.

import java.net.*;
import java.io.*;
public class ConnectionTest {
 public static void main(String[] args) {
 try {
 URL yahoo = new URL("http://www.yahoo.com/");
 URLConnection yahooConnection = yahoo.openConnection();
 DataInputStream dis = new DataInputStream(yahooConnection.getInputStream());
 String inputLine;
 while ((inputLine = dis.readLine()) != null)
 System.out.println(inputLine);
 dis.close();
 } catch (Exception e) {
 System.out.println("Error while communicating!”);
 }
 }
}

Java Technology - Ivo Vondrak ‘99

The Socket Model
u The server establishes a port number and waits. When

the client requests a connection, the server opens the
socket connection with the accept() method.

u The client establishes a connection with host on a
given port #.

u Both client ans server communicate using InputStream
and OutputStream.

Server
ServerSocket(port)

accept()

OutputStream
InputStream

close()

Client
Socket(host, port)

// attempt to connect

OutputStream
InputStream

close()

Java Technology - Ivo Vondrak ‘99

Example: Simple Server
Intent - wait for client and send it a message when connected.

public class SimpleServer {
 ServerSocket server;
 String message = "Hello from server!";
 public void run() {
 try {
 server = new ServerSocket(5432, 5);
 listen();
 } catch (Exception e) { //… }
 }
 protected void listen() {
 try {
 while(true) {
 Socket client = server.accept();
 ObjectOutputStream out = new ObjectOutputStream(client.getOutputStream());
 out.writeObject(message);
 client.close();
 }
 } catch (Exception e) { //… }
 }
}

Java Technology - Ivo Vondrak ‘99

Example: Simple Client
Intent - connect to the server and get a message.

public class SimpleClient {
 public void run(String host) {
 try {
 Socket server = new Socket(host,5432);
 ObjectInputStream input =
 new ObjectInputStream(server.getInputStream());
 System.out.println(input.readObject());
 server.close();
 }
 catch (Exception e) {
 System.out.println("Error while getting message!");
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Client/Server Application

public class ServerTest {
 public static void main(String[] args) {
 new SimpleServer().run();
 }
}

public class ClientTest {
 public static void main(String[] args) {
 new SimpleClient().run(args[0]);
 }
}

Java Technology - Ivo Vondrak ‘99

Graphical User Interface
u Abstract Window Toolkit - java.awt.*.
u AWT Components - containers (such as

windows and menubars), leafs (such as
buttons, lists, and textareas) and higher-
level componets (such as file dialogs).

u Layout Managers - the way how to lay out
components within containers.

u AWT Event Model.

Java Technology - Ivo Vondrak ‘99

Example: Counter with GUI
Intent - create counter with GUI. Counter will be controlled by
Increment/Decrement buttons. Communication between
counter and GUI will be based on Observer/Observable
pattern.

Java Technology - Ivo Vondrak ‘99

Counter Type and Class
public interface CounterType {
 public void increment();
 public void decrement();
}

import java.util.*;
public class Counter extends Observable implements CounterType {
 private int value = 0;
 public Counter(Observer o)
 { addObserver(o); }
 public void setValue(int value) {
 this.value = value;
 setChanged();
 notifyObservers(new Integer(value));
 }
 public int getValue()
 { return value;}
 public void increment()
 { setValue(getValue()+1); }
 public void decrement()
 { setValue(getValue()-1); }
}

Java Technology - Ivo Vondrak ‘99

Counter GUI
// Don’t forget to import java.awt.*, java.awt.event.*, java.util.*
public class CounterGUI extends Frame implements Observer, ActionListener {
 protected Button inc = new Button(" Increment ");
 protected Button dec = new Button(" Decrement ");
 protected Label label = new Label(" Counter value: ");
 protected TextField value = new TextField("0");
 protected CounterType counter = new Counter(this);
 public CounterGUI() {
 setLayout(new BorderLayout(15,15));
 setTitle("Counter");
 Panel north = new Panel();
 north.setLayout(new BorderLayout());
 north.add("North",label);
 north.add("South",value);
 Panel south = new Panel();
 south.setLayout(new GridLayout(1,2,15,15));
 south.add(inc);
 south.add(dec);
 add("North",north);
 add("South",south);
 resize(200,130);
 inc.addActionListener(this);
 dec.addActionListener(this);
 }

Java Technology - Ivo Vondrak ‘99

Counter GUI: Event Handling
...

 // ActionListener’s method implementation
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == inc) {
 counter.increment();
 }
 if (e.getSource() == dec) {
 counter.decrement();
 }
 }
 // Observer’s method implementation
 public void update(Observable c, Object arg) {
 value.setText(arg.toString());
 }
}

public class CounterTest {
 public static void main(String[] arg) {
 new CounterGUI().show();
 }
}

Java Technology - Ivo Vondrak ‘99

Applets
u The life cycle of an applet.
u Methods for drawing.
u User interface for applets.
u Security restrictions.

Java Technology - Ivo Vondrak ‘99

Applet’s Life Cycle
u Class Applet implements following life cycle

methods:
u init() to initialize the applet each time it's loaded (or

reloaded).
u start() to start the applet's execution, such as when the

applet's loaded or when the user revisits a page that
contains the applet.

u stop() to stop the applet's execution, such as when the
user leaves the applet's page or quits the
browser.

u destroy() to perform a final cleanup in preparation for
unloading.

Java Technology - Ivo Vondrak ‘99

Example: Life Cycle
import java.applet.*;
import java.awt.*;
public class LifeCycle extends Applet {
 StringBuffer buffer;
 public void init() {
 buffer = new StringBuffer();
 display("Initializing...");
 }
 public void start()
 { display("Starting..."); }
 public void stop() {
 { display("Stopping..."); }
 public void destroy()
 { display("Destroying..."); }

 protected void display(String status) {
 buffer.append(status);
 showStatus(status);
 repaint();
 }
 public void paint(Graphics g)
 { g.drawString(buffer.toString(), 5, 15); }
}

...
<applet code="LifeCycle.class" width=200 height=50> </applet>

Java Technology - Ivo Vondrak ‘99

Methods for Drawing
u paint(Graphics g) - this Applet’s method is called when

the apllet drawing area must be refreshed. The derived
class must override this method to draw anything
different to the drawing area.

u repaint() - this method is called when the apllet must
be scheduled for repainting. This method should not
be overriden.

u update(Graphics g) - this method is scheduled by
repaint. The derived class can override following
default behavior:
u Setting the color to the background color.
u Drawing a filled rectangle over the entire context.
u Setting the color to the foreground color.
u Calling then paint(Graphics g) method.

Java Technology - Ivo Vondrak ‘99

Example: Graphics Editor
Intent - create simple graphics editor for drawing lines in red
or green color. To avoid flickering double-buffered drawing
will be employed.

Java Technology - Ivo Vondrak ‘99

Applet Initialization
public class GraphicsEditor extends Applet
 implements ItemListener, MouseListener, MouseMotionListener {
 Point p1,p2;
 Image buffer;
 Checkbox red, green;
 Color color;
 public void init() {
 CheckboxGroup cbg = new CheckboxGroup();
 red = new Checkbox("Red", cbg, true);
 green = new Checkbox("Green", cbg, false);
 Panel north = new Panel();
 north.add("West", red);
 north.add("East", green);
 add("North", north);
 buffer = createImage(300,300);
 color = Color.red;
 red.addItemListener(this);
 green.addItemListener(this);
 addMouseListener(this);
 addMouseMotionListener(this);
 }

Java Technology - Ivo Vondrak ‘99

Drawing Methods

public void paint(Graphics g) {
 g.drawImage(buffer,0,0,this);
 if (p1 != null && p2 != null) {
 g.setColor(color);
 g.drawLine(p1.x, p1.y, p2.x, p2.y);
 }
 }

 // update is overriden to avoid cleaning of the drawing area
 public void update(Graphics g) {
 paint(g);
 }

Java Technology - Ivo Vondrak ‘99

Event Handling
public void itemStateChanged(ItemEvent e) {

 if (e.getSource() == red) color = Color.red;
 if (e.getSource() == green) color = Color.green;
 }
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mousePressed(MouseEvent e) {
 p1 = e.getPoint();
 }
 public void mouseReleased(MouseEvent e) {
 Graphics g = buffer.getGraphics();
 g.setColor(color);
 g.drawLine(p1.x,p1.y,p2.x,p2.y);
 p1 = p2 = null;
 repaint();
 }
 public void mouseDragged(MouseEvent e) {
 p2 = e.getPoint();
 repaint();
 }
 public void mouseMoved(MouseEvent e) {}
}

Java Technology - Ivo Vondrak ‘99

Restrictions
u Every browser implements security policies to keep

applets from compromising system security.
u Current browsers impose the following restrictions on

any applet that is loaded over the network:
u An applet cannot load libraries or define native methods.
u It cannot ordinarily read or write files on the host that's

executing it.
u It cannot make network connections except to the host that it

came from.
u It cannot start any program on the host that's executing it.
u It cannot read certain system properties.
u Windows that an applet brings up look different than windows

that an application brings up.

Java Technology - Ivo Vondrak ‘99

Advanced Techniques
u JDBC - database access from Java.
u Java Reflection - introspection about

classes and object.
u Java Beans - component based

development.
u Remote Method Invocation (RMI) -

distributed objects in Java.

Java Technology - Ivo Vondrak ‘99

Database Access from Java

u JDBC makes it possible to do three things:
u establish a connection with a database
u send SQL statements
u process the results.

JDBC is a Java application programming interface
(API) for executing SQL statements. It enables to
send SQL statements to virtually any relational
database.

Java Technology - Ivo Vondrak ‘99

Example: Java DB Access
Intent - create Java application that will display information about
courses, responsible lecturers and their phone numbers. The
information is stored in the database Education that consists of
two relational tables.

Courses
Employees

Education

SELECT Employees.Name, Employees.Phone, Courses.Course
FROM Employees, Courses WHERE Employees.Name = Courses.Name;

Java Technology - Ivo Vondrak ‘99

JDBCTM Application
import java.sql.*;
public class JDBCTest {
 public static void main(String[] arg) {
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con = DriverManager.getConnection("jdbc:odbc:Education");
 Statement statement = con.createStatement();
 ResultSet rs = statement.executeQuery(
 “SELECT Employees.Name, Employees.Phone, Courses.Course
 FROM Employees, Courses
 WHERE Employees.Name = Courses.Name;");
 while (rs.next())
 System.out.println(rs.getString("Name")+" ("
 +rs.getString("Phone")+"): "+rs.getString("Course"));
 } catch (Exception e) {}
 }
}

Java Technology - Ivo Vondrak ‘99

Java Reflection
u Java reflection tools enable introspection

about the classes and objects in the current
JVM:
u A Field object represents a reflected field (a

class variable or an instance variable).
u A Method object represents a reflected

method (an abstract method, an instance
method, or a class method).

u A Constructor object represents a reflected
constructor.

Java Technology - Ivo Vondrak ‘99

Example: Introspection
Intent - introspect class of an unknown object, find its display
method and invoke it.

public class Unknown {
 public void display() {
 System.out.println("The display method invoked!");
 }
 public void method1() {}
 public void method2() {}
} public class ReflectionTest {

 public static void main(String[] arg) {
 Unknown obj = new Unknown();
 Class cl = obj.getClass();
 Method[] methods = cl.getMethods();
 for (int i=0; i < methods.length; i++) {
 if (methods[i].getName().equals("display"))
 try { methods[i].invoke(obj,null); }
 catch (Exception e) {}
 }
 }
}

Java Technology - Ivo Vondrak ‘99

Component Based Development

u What differentiates bean from a class instance is a possibility to
inform about its behavior and properties during design-time in
contrast to run-time.

u Typical Java Beans features are following:
u Support for introspection allowing a builder tool to analyze how a bean

works.
u Support for customization allowing a user to alter the appearance and

behavior of a bean.
u Support for events allowing beans to fire events, and informing builder tools

about both the events they can fire and the events they can handle.
u Support for properties, both for customization and for programmatic use.
u Support for persistence, so that a bean can be customized in an application

builder and then have its customized state saved and restored later.

A JavaBeanTM is a reusable software component that can
be manipulated visually in a builder tool.

Java Technology - Ivo Vondrak ‘99

Scenario of App[let/lication] Building
u Loading the development environment

(standard or visual).
u Laying out the app[let/lication] by adding

beans (drag&drop or programmatically).
u Customizing the beans - properties of

involved beans are changed.
u Wiring the beans based on event->action

(method) paradigm.
u Packaging the app[let/lication] by generating

.jar file containing beans’ .class and .ser
(serialized objects) files.

Java Technology - Ivo Vondrak ‘99

Example: Counter Bean
import java.beans.*;
import java.io.*;
public class CounterBean implements Serializable {
 protected int value = 0;
 private PropertyChangeSupport listeners = new PropertyChangeSupport(this);
 public synchronized int getValue()
 { return value; }
 public synchronized void setValue(int newValue) {
 int oldValue = value;
 value = newValue;
 listeners.firePropertyChange("value", new Integer(oldValue), new Integer(newValue));
 }
 public synchronized void increment()
 { setValue(getValue() + 1); }
 public synchronized void decrement()
 { setValue(getValue() - 1); }
 public void addPropertyChangeListener(PropertyChangeListener l)
 { listeners.addPropertyChangeListener(l); }
 }
 public void removePropertyChangeListener(PropertyChangeListener l)
 { listeners.removePropertyChangeListener(l); }
}

Java Technology - Ivo Vondrak ‘99

Counter Bean Applet
public class CounterBeanApplet extends Applet
 implements ActionListener, PropertyChangeListener {
 // Definition of GUI elements - buttons inc and dec, text field value, etc...
 protected CounterBean counter;
 public void init() {
 try {
 ClassLoader cl = this.getClass().getClassLoader();
 counter = (CounterBean) Beans.instantiate(cl,"CounterBean");
 // counter = new CounterBean(); can be used in case that there is no persistence info
 counter.addPropertyChangeListener(this);
 // Laying out of GUI components …
 }
 catch (Exception e) {}
 }
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == inc) counter.increment();
 if (e.getSource() == dec) counter.decrement();
 }
 public void propertyChange(PropertyChangeEvent ev) {
 value.setText(ev.getNewValue().toString());
 // value.setText(new Integer(counter.getValue()).toString());
 // is perfectly valid, too.
 }
}

Java Technology - Ivo Vondrak ‘99

Visual Building
Intent - connect the counter component with an applet
in a visual builder tool.

actionPerformed(ActionEvent)
-> decrement()

actionPerformed(ActionEvent)
-> increment()

propertyChanges(PropertyChangeEvent)
 -> setText(String)

getValue()

Java Technology - Ivo Vondrak ‘99

Remote Objects
u Remote objects are objects whose

methods can be invoked from
another Java VM.

u Remote interface is Java interface
that declares the methods of remote
object.
u Remote object may support many remote

interfaces.

Java Technology - Ivo Vondrak ‘99

Distribution of Objects

ObjectA

ObjectB

ObjectX

ObjectY

App[lication|let] 1 App[lication|let] N

service
request

Network

Java Technology - Ivo Vondrak ‘99

Object Request Broker

ObjectA

ObjectX
(Proxy)

ObjectX
(Impl.)

App[lication|let] 1 App[lication|let] N

service
request

Network
ORB (CORBA, RMI)

ObjectY

Proxy represents the remote object in communication with client.

ORB (CORBA, RMI)

Java Technology - Ivo Vondrak ‘99

Stubs and Skeletons

Stub

Skeleton

Client

Servant

Client operates on a stub
(remote object client-side
proxy) as local object. Stub
marshals arguments for
transmission to server.

Skeleton unmarshals
arguments and calls
servant.

Servant receives call from
skeleton as local call.

And the process is reversed for returning results.

Java Technology - Ivo Vondrak ‘99

Java IDL and Java RMI
u Java IDL (Interface Definition Language) is

heterogeneous solution.
u Uses a standard, language-neutral, interface

description language.
u Used open, standard protocols to interact with

services written in many languages (CORBA).
u Java RMI (Remote Method Invocation) is a

Java-only solution.
u Uses Java interface and data types to describe

remote interfaces.
u Uses specialized protocols to interact with

objects written in Java.

Java Technology - Ivo Vondrak ‘99

Remote Method Invocation
u Method invocation between objects in

different Java VM.
u Pure Java interfaces - no new interface

definition language is needed.
u Pass and return and Java Object.
u Dynamic loading of classes.

Java Technology - Ivo Vondrak ‘99

RMI Interfaces and Classes

Remote RemoteObject

RemoteServer

UnicastRemoteServer

Interfaces Classes

implementation
inheritance

MyObject MyObjectImpl

Java Technology - Ivo Vondrak ‘99

Example: Remote Counter

public interface RemoteCounter extends Remote {
 public int getValue() throws RemoteException;
 public void increment() throws RemoteException;
 public void decrement() throws RemoteException;
}

Intent - create counter as a remote object that can be
incremented/decremented from client’s applet.

Java Technology - Ivo Vondrak ‘99

Remote Counter Implementation

public class RemoteCounterImp extends UnicastRemoteObject
 implements RemoteCounter {
 protected int value;
 public RemoteCounterImp() throws RemoteException {
 super();
 value = 0;
 }
 public int getValue()
 { return value; }
 public void increment()
 { value++; }
 public void decrement()
 { value--; }
} rmic RemoteCounterImp.class

Stub and skeleton is generated.

Java Technology - Ivo Vondrak ‘99

Publishing the Counter

public class RemoteCounterApp {
 public static void main(String[] arg) {
 try {
 System.setSecurityManager(new RMISecurityManager());
 RemoteCounterImp counter = new RemoteCounterImp();
 Naming.rebind("//myhost:1099/COUNTER",counter);
 }
 catch (Exception e) {
 System.out.println("Error while building remote counter!");
 }
 }
}

start rmiregistry or rmiregistry & The RMI registry is a simple
server-side bootstrap name server
that allows remote clients to get a
reference to a remote object.

Java Technology - Ivo Vondrak ‘99

Client of Remote Counter
public class RemoteCounterApplet extends Applet implements ActionListener {
 // Definition of GUI elements - buttons inc and dec, text field value, etc...
 protected RemoteCounter counter;
 public void init() {
 try {
 // Laying out of GUI components …
 counter = (RemoteCounter) Naming.lookup("//"+getCodeBase().getHost()+"/COUNTER");
 updateText();
 } catch (Exception e) {}
 }
 public void actionPerformed(ActionEvent e) {
 try {
 if (e.getSource() == inc) counter.increment();
 if (e.getSource() == dec) counter.decrement();
 updateText();
 } catch (Exception e) {}
 }
 protected void updateText() throws RemoteException {
 value.setText(new Integer(counter.getValue()).toString());
 }
}

Java Technology - Ivo Vondrak ‘99

Behind the Scope ...
u Internationalization
u Java Native Methods
u JAR - Java Archive
u Java JIT
u Java Run-Time Environment
u Java Foundation Classes
u Generating API documentation in HTML

format from Java source code

